18 research outputs found

    Orbital forcing, ice-volume and CO2 across the Oligocene-Miocene Transition

    Get PDF
    Paleoclimate records suggest that a rapid major transient Antarctic glaciation occurred across the Oligocene‐Miocene transition (OMT; ca. 23 Ma; ~50 m sea level equivalent in 200‐300 kyrs). Orbital forcing has long been cited as an important factor determining the timing of the OMT glacial event. A similar orbital configuration occurred 1.2 million years prior to the OMT, however, and was not associated with a major climate event, suggesting that additional mechanisms play an important role in ice sheet growth and decay. To improve our understanding of the OMT, we present a boron isotope‐based CO2 record between 22 and 24 Ma. This new record shows that δ11B/CO2 was comparatively stable in the million years prior to the OMT glaciation and decreased by 0.7 ‰ (equivalent to a CO2 increase of ~65 ppm) over ~300 kyrs during the subsequent deglaciation. More data are needed but we propose that the OMT glaciation was triggered by the same forces that initiated sustained Antarctic glaciation at the Eocene‐Oligocene transition; long‐term decline in CO2 to a critical threshold and a superimposed orbital configuration favourable to glaciation (an eccentricity minimum and low‐amplitude obliquity change). When comparing the reconstructed CO2 increase with estimates of δ18Osw during the deglaciation phase of the OMT, we find that the sensitivity of the cryosphere to CO2 forcing is consistent with recent ice sheet modelling studies that incorporate retreat into subglacial basins via ice cliff collapse with modest CO2 increase, with clear implications for future sea level rise

    Eemian Greenland SMB strongly sensitive to model choice

    Get PDF
    Understanding the behavior of the Greenland ice sheet in a warmer climate, and particularly its surface mass balance (SMB), is important for assessing Greenland's potential contribution to future sea level rise. The Eemian interglacial period, the most recent warmer-than-present period in Earth's history approximately 125&thinsp;000 years ago, provides an analogue for a warm summer climate over Greenland. The Eemian is characterized by a positive Northern Hemisphere summer insolation anomaly, which complicates Eemian SMB calculations based on positive degree day estimates. In this study, we use Eemian global and regional climate simulations in combination with three types of SMB models – a simple positive degree day, an intermediate complexity, and a full surface energy balance model – to evaluate the importance of regional climate and model complexity for estimates of Greenland's SMB. We find that all SMB models perform well under the relatively cool pre-industrial and late Eemian. For the relatively warm early Eemian, the differences between SMB models are large, which is associated with whether insolation is included in the respective models. For all simulated time slices, there is a systematic difference between globally and regionally forced SMB models, due to the different representation of the regional climate over Greenland. We conclude that both the resolution of the simulated climate as well as the method used to estimate the SMB are important for an accurate simulation of Greenland's SMB. Whether model resolution or the SMB method is most important depends on the climate state and in particular the prevailing insolation pattern. We suggest that future Eemian climate model intercomparison studies should include SMB estimates and a scheme to capture SMB uncertainties.</p

    The greening of Arabia: multiple opportunities for human occupation of the Arabian peninsula during the Late Pleistocene inferred from an ensemble of climate model simulations

    Get PDF
    Climate models are potentially useful tools for addressing human dispersals and demographic change. The Arabian Peninsula is becoming increasingly significant in the story of human dispersals out of Africa during the Late Pleistocene. Although characterised largely by arid environments today, emerging climate records indicate that the peninsula was wetter many times in the past, suggesting that the region may have been inhabited considerably more than hitherto thought. Explaining the origins and spatial distribution of increased rainfall is challenging because palaeoenvironmental research in the region is in an early developmental stage. We address environmental oscillations by assembling and analysing an ensemble of five global climate models (CCSM3, COSMOS, HadCM3, KCM, and NorESM). We focus on precipitation, as the variable is key for the development of lakes, rivers and savannas. The climate models generated here were compared with published palaeoenvironmental data such as palaeolakes, speleothems and alluvial fan records as a means of validation. All five models showed, to varying degrees, that the Arabia Peninsula was significantly wetter than today during the Last Interglacial (130 ka and 126/125 ka timeslices), and that the main source of increased rainfall was from the North African summer monsoon rather than the Indian Ocean monsoon or from Mediterranean climate patterns. Where available, 104 ka (MIS 5c), 56 ka (early MIS 3) and 21 ka (LGM) timeslices showed rainfall was present but not as extensive as during the Last Interglacial. The results favour the hypothesis that humans potentially moved out of Africa and into Arabia on multiple occasions during pluvial phases of the Late Pleistocene

    Simulated oxygen isotopes in cave drip water and speleothem calcite in European caves

    Get PDF
    Interpreting stable oxygen isotope (δ18O) records from stalagmites is still one of the complex tasks in speleothem research. Here, we present a novel model-based approach, where we force a model describing the processes and modifications of δ18O from rain water to speleothem calcite (Oxygen isotope Drip water and Stalagmite Model – ODSM) with the results of a state-of-the-art atmospheric general circulation model enhanced by explicit isotope diagnostics (ECHAM5-wiso). The approach is neither climate nor cave-specific and allows an integrated assessment of the influence of different varying climate variables, e.g. temperature and precipitation amount, on the isotopic composition of drip water and speleothem calcite. First, we apply and evaluate this new approach under present-day climate conditions using observational data from seven caves from different geographical regions in Europe. Each of these caves provides measured δ18O values of drip water and speleothem calcite to which we compare our simulated isotope values. For six of the seven caves modeled δ18O values of drip water and speleothem calcite are in good agreement with observed values. The mismatch of the remaining caves might be caused by the complexity of the cave system, beyond the parameterizations included in our cave model. We then examine the response of the cave system to mid-Holocene (6000yr before present, 6ka) climate conditions by forcing the ODSM with ECHAM5-wiso results from 6ka simulations. For a set of twelve European caves, we compare the modeled mid-Holocene-to-modern difference in speleothem calcite δ18O to available measurements. We show that the general European changes are simulated well. However, local discrepancies are found, and might be explained either by a too low model resolution, complex local soil-atmosphere interactions affecting evapotranspiration or by cave specific factors such as non-equilibrium fractionation processes. The mid-Holocene experiment pronounces the potential of the presented approach to analyse δ18O variations on a spatially large (regional to global) scale. Modelled as well as measured European δ18O values of stalagmite samples suggest the presence of a strong, positive mode of the North Atlantic Oscillation at 6 ka before present, which is supported by the respective modelled climate parameters

    Simulated European stalagmite record and its relation to a quasi-decadal climate mode

    Get PDF
    A synthetic stalagmite δ18O record for the Bunker Cave (51° N, 7° E) is constructed using a combined climate–stalagmite modelling approach where we combine an atmospheric circulation model equipped with water isotopes and a model simulating stalagmite calcite δ18O values. Mixing processes in the soil and karst above the cave represent a natural low-pass filter of the speleothem climate archive. Stalagmite δ18O values at Bunker Cave lag the regional surface climate by 3–4 yr. The power spectrum of the simulated speleothem calcite δ18O record has a pronounced peak at quasi-decadal time scale, which is associated with a large-scale climate variability pattern in the North Atlantic. Our modelling study suggests that stalagmite records from Bunker Cave are representative for large-scale teleconnections and can be used to obtain information about the North Atlantic and its decadal variability

    Antarctic ice-sheet response to atmospheric CO<sub>2</sub> and insolation in the Middle Miocene

    No full text
    Foraminiferal oxygen isotopes from deep-sea sediment cores suggest that a rapid expansion of the Antarctic ice sheet took place in the Middle Miocene around 13.9 million years ago. The origin for this transition is still not understood satisfactorily. One possible cause is a drop in the partial pressure of atmospheric carbon dioxide (<i>p</i>CO<sub>2</sub>) in combination with orbital forcing. A complication is the large uncertainty in the magnitude and timing of the reconstructed <i>p</i>CO<sub>2</sub> variability and additionally the low temporal resolution of the available <i>p</i>CO<sub>2</sub> records in the Middle Miocene. We used an ice sheet-climate model of reduced complexity to assess variations in Antarctic ice sheet volume induced by <i>p</i>CO<sub>2</sub> and insolation forcing in the Middle Miocene. The ice-sheet sensitivity to atmospheric CO<sub>2</sub> was tested for several scenarios with constant <i>p</i>CO<sub>2</sub> forcing or a regular decrease in <i>p</i>CO<sub>2</sub>. This showed that small, ephemeral ice sheets existed under relatively high atmospheric CO<sub>2</sub> conditions (between 640–900 ppm), whereas more stable, large ice sheets occurred when <i>p</i>CO<sub>2</sub> was less than ~600 ppm. The main result of this study is that the <i>p</i>CO<sub>2</sub>-level must have declined just before or during the period of oxygen-isotope increase, thereby crossing a <i>p</i>CO<sub>2</sub> glaciation threshold of around 615 ppm. After the decline, the exact timing of the Antarctic ice-sheet expansion depends also on the relative minimum in summer insolation at approximately 13.89 million years ago. Although the mechanisms described appear to be robust, the exact values of the <i>p</i>CO<sub>2</sub> thresholds are likely to be model-dependent

    Simulating last interglacial climate with NorESM: role of insolation and greenhouse gases in the timing of peak warmth

    Get PDF
    The last interglacial (LIG, similar to 130-116 ka, ka = 1000 yr ago) is characterized by high-latitude warming and is therefore often considered as a possible analogue for future warming. However, in contrast to predicted future greenhouse warming, the LIG climate is largely governed by variations in insolation. Greenhouse gas (GHG) concentrations were relatively stable and similar to pre-industrial values, with the exception of the early LIG when, on average, GHGs were slightly lower. We performed six time-slice simulations with the low-resolution version of the Norwegian Earth System Model covering the LIG. In four simulations only the orbital forcing was changed. In two other simulations, representing the early LIG, additionally the GHG forcing was reduced. With these simulations we investigate (1) the different effects of GHG versus insolation forcing on the temperatures during the LIG; (2) whether reduced GHGs can explain the low temperatures reconstructed for the North Atlantic; and (3) the timing of the observed LIG peak warmth. Our simulations show that the insolation forcing results in seasonal and hemispheric differences in temperature. In contrast, a reduction in the GHG forcing causes a global and seasonal-independent cooling. Furthermore, we compare modelled temperatures with proxy-based LIG sea-surface temperatures along a transect in the North Atlantic. The modelled North Atlantic summer sea-surface temperatures capture the general trend of the reconstructed summer temperatures, with low values in the early LIG, a peak around 125 ka, and a steady decrease towards the end of the LIG. Simulations with reduced GHG forcing improve the model-data fit as they show lower temperatures in the early LIG. Furthermore we show that the timing of maximum summer and winter surface temperatures is in line with the local summer and winter insolation maximum at most latitudes. Two regions where the maximum local insolation and temperature do not occur at the same time are Antarctica and the Southern Ocean. The austral summer insolation has a late maximum at similar to 115 ka. In contrast the austral summer temperatures in Antarctica show maxima at both similar to 130 ka and similar to 115 ka, and the Southern Ocean temperatures peak only at similar to 130 ka. This is probably due to the integrating effect of the ocean, storing heat from other seasons and resulting in relatively warm austral summer temperatures. Reducing the GHG concentrations in the early LIG (125 and 130 ka) results in a similar timing of peak warmth, except over Antarctica. There, the lower austral summer temperatures at 130 ka shift the maximum warmth to a single peak at 115 ka
    corecore